Ишемический инфаркт мозга морфология

Ишемический инфаркт мозга морфология thumbnail

Ишемический инфаркт мозга, образующийся при тромбозе атеросклероти-чески измененных прецеребральных или церебральных артерий, имеет разнообразную локализацию. Это – самое частое (75% случаев) проявление ишемического инсульта. Выглядит ишемический инфаркт как очаг серого размягчения мозга. При микроскопическом исследовании среды некротических масс можно обнаружить погибшие нейроны.

Морфология транзиторной ишемии головного мозга представлена сосудистыми расстройствами (спазм артериол, плазматическое пропитывание их стенок, периваскулярный отек и единичные мелкие геморрагии) и очаговыми изменениями мозговой ткани (отек, дистрофические изменения нейронов). Эти изменения обратимы; на месте бывших мелких геморрагий могут определяться периваскулярные отложения гемосидерина.

При образовании гематомы мозга, которая встречается в 85% при геморрагическом инсульте, находят выраженную альтерацию стенок артериол и мелких артерий с образованием микроаневризм и разрывом их стенок. В месте кровоизлияния ткань мозга разрушается, образуется полость, заполненная свертками крови и размягченной тканью мозга (красное размягчение мозга). Кровоизлияние локализуется чаще всего в подкорковых узлах головного мозга (зрительный бугор, внутренняя капсула) и мозжечке. Размеры его бывают разными: иногда оно охватывает всю массу подкорковых узлов, кровь прорывается в боковые, III и IV желудочки мозга, просачивается в область его основания. Инсульты с прорывом в желудочки мозга всегда заканчиваются смертью. Если больной переживает инсульт, то по периферии кровоизлияния в ткани мозга появляется много сидерофагов, зернистых шаров, клеток глии и свертки крови рассасываются. На месте гематомы образуется киста с ржавыми стенками и буроватым содержимым. У больных, длительно страдавших мозговой формой гипертонической болезни и умерших от инсульта, наряду со свежими кровоизлияниями нередко находят кисты как следствие бывших ранее геморрагий.

Ишемический инфаркт мозга, образующийся при тромбозе атеросклеротически измененных прецеребральных или церебральных артерий, имеет разнообразную локализацию. Это – самое частое (75% случаев) проявление ишемического инсульта. Выглядит ишемический инфаркт как очаг серого размягчения мозга. При микроскопическом исследовании среды некротических масс можно обнаружить погибшие нейроны.

При микроскопическом исследовании ткани головного мозга в большинстве случаев границы инфаркта недостаточно рельефны. Обнаруживаются явления отека мозга и некротические изменения в нервных клетках. Нейроны набухшие, плохо окрашенные клетки резко изменены.

Фоновым заболеванием ишемического инфаркта головного мозга является атеросклероз. (атеросклеротические бляшки в просветах сосудов). При микроскопическом исследовании атеросклеротическая бляшка была представлена тремя компонентами: клеточным, волокнистым и липидным. Волокнистый компонент состоит из внеклеточного матрикса соединительной ткани. Третий компонент представлен скоплениями липидов (пенистые клетки). Последние занимают весь центральный отдел бляшки, представляющий собой детрит, состоящий из липидов, кристаллов холестерина, плазменных белков, разрушенных клеток и солей кальция .

2.Гнойный энцефалит, причины, макроскопические, микроскопические изменения, исход, причины

Картина гнойного энцефалита в основном определяется его этиологией и патогенезом. При метастазах всегда образуются абсцессы, число и величина которых могут быть разнообразными, но чаще встречаются единичные и мелкие абсцессы. По гистологическому строению эти абсцессы сходны с абсцессами в других органах. В месте расположения этих абсцессов некроз и гнойное расплавление ткани органа, в данном случае нервной, с образованием полости, заполненной гноем. При большом увеличении следует дифференцировать микроабсцессы от узелков при нсгнойном энцефалите. В абсцессах (особенно в острых случаях) всегда преобладают гнойные тельца (нейтрофильные лейкоциты в различных стадиях дистрофии и распада). При этом же увеличении обращают внимание на окружающую ткань мозга, где заметны: гиперемия, иногда кровоизлияния, слабая или сильная пролиферация клеток невроглии и адвентиции кровеносных сосудов, различная дистрофия нервных клеток. При травме мозга гнойное воспаление со всеми присущими ему признаками развивается в месте ранения, а при переходе с оболочек (или костей черепа) гнойный процесс распространяется лим-фогенным путем по периваскулярным пространствам, вовлекая все новые участки мозга. Некрозу и гнойному воспалению подвергаются и прилегающая к сосудам невроглия, и нервные клетки, вследствие чего в ткани мозга могут образоваться небольшие гнойные очажки, или абсцессы. При этом следует иметь в виду, что в отличие от муфт лимфоидных клеток здесь мало, а вокруг сосуда скапливается гнойный экссудат с преобладанием нейтрофильных лейкоцитов. Наряду с экссудацией и альтерацией местами отмечают также пролиферацию иевроглиальных и адвен-тициальных клеток.

Макроскопически абсцесс имеет вид полости, заполненной желтовато-зеленым, желтовато- или серо-белым гноем сливкопо-добной или более жидкой консистенции. При лимфогенном распространении гнойного воспаления пораженный участок мозга размягчен, местами покрасневший, местами с точечными кровоизлияниями. При более длительном течении в местах размягчения обнаруживают мелкие абсцессы.

3. Объяснить навык – умение видеть проблему с точки зрения пациента

Для того, чтобы понимать пациента и общаться с ним, требуются уважение больного как человека и вера в значимость, искренность, открытость, ценность, сопереживание, доброту и силу этого человека, а также в его способность самому руководить своими действиями и признание его права на это. Это больше, чем доброжелательное и технически грамотное оказание помощи. Это также ответственные, заботливые взаимоотношения и значимость этих взаимоотношений требует осмысленности, основанной на осознании самого себя и индивидуальности другого человека. Коммуникация требует понимания внутренней ценностной ориентации другого человека, и это понимание может позволить двум людям, участвующим в этом процессе, переступить через свои ролевые взаимоотношения и установить отношения истинного диалога. Уникальный характер каждого отдельного человека выявляется именно через общение.

Читайте также:  Что такое инфаркт и какие операции делают

Источник

Как известно, к ишемии мозга приводит резкое снижение уровня мозгового кровотока или полная его остановка. Ишемические повреждения мозга — это один из наиболее частых компонентов посттравматического состояния мозга.

Ишемические повреждения мозга довольно часто обнаруживаются в летальных случаях ЧМТ. Так, детальное исследование 151 макропрепарата мозга с ЧМТ, проведенное J. Garsia c соавт., выявило ишемическое повреждение в 91%. При этом, наиболее часто очаги ишемического повреждения были обнаружены в базальных ядрах, мозжечке, в среднем мозге. Проведенный авторами клинико-анатомический анализ показал прямую зависимость между фактами экстра- и интракраниальных «катастроф», таких как остановка сердечной деятельности, повышение внутричерепного давления, эпиприпадка, снижения мозгового кровотока, гипоксемией и наличием в мозге пострадавшего наряду с ушибами мозга также и ишемических повреждений.

J. Garsia с соавт. подчеркивают, что ишемия мозга бывает глобальной или очаговой. В свою очередь, глобальная ишемия может быть необратимой, нарастающей и транзиторной (преходящей).

Так, глобальная и необратимая ишемия мозга характерна для посмертного состояния мозга. Глобальная нарастающая ишемия наблюдается в агональном состоянии. В результате этих двух типов глобальной ишемии в мозговой ткани развиваются аутолитические процессы.

К транзиторной (преходящей) глобальной ишемии мозга относятся состояния, наблюдаемые, например, при клинической смерти или других случаях, в которых после временной остановки сердца вновь восстанавливается кровообращение. Таким образом, глобальная транзиторная ишемия мозга может возникнуть в случаях ЧМТ, сопровождающихся резким падением артериального давления. Кратковременное удушье также является условием развития глобальной транзиторной ишемии мозга.

В зависимости от длительности глобальной ишемии, в веществе мозга могут проявиться различной степени выраженности дистрофические, некробиотические процессы вплоть до смерти мозга. Микроскопическая характеристика смерти мозга — это отсутствие ядерного окрашивания, в первую очередь нейронов, слабая окрашиваемость миелиновых оболочек в и отсутствие при этом воспалительной реакции, побледнение эритроцитов.

Наиболее ранние повреждения мозга наблюдаются в участках повышенной чувствительности к ишемии. Как известно, в головном мозге существуют участки, в которых в первую очередь развиваются повреждения при глобальной ишемии. Как правило, эти изменения обнаруживаются в зоне стыка конечных ветвей артерий, в так называемых зонах смежного кровоснабжения. Скорость кровотока в этих участках значительно меньше, чем в остальных участках мозга. Поэтому, даже кратковременная остановка кровотока приводит к образованию стаза и сладжа эритроцитов с последующим формированием тромба в этих сосудах.

Как было уже отмечено выше, повышенной чувствительностью к глобальной ишемии обладают клетки гиппокампа и клетки Пуркинье мозжечка.

Существует разница в чувстительности к ишемии даже между различными слоями клеток коры мозга. Так, клетки III, IV и V слоев коры полушарий мозга более чувствительны к ишемии, чем клетки I, II и VI слоев.

При одних и тех же условиях ишемии, нейроны в целом, оказываются более чувствительными, чем олигодендроглиоциты и в еще большей степени, чем астроциты.

Очаговая ишемия мозга является следствием нарушения кровообращения в зоне кровоснабжения одной или нескольких артерий. Окклюзия про— света артерии, артериолы или вены приводит к длительной очаговой ишемии мозга и развитию очага коагуляционного некроза.

Нередко причиной очаговой ишемии мозга ока— зывается спазм одной, двух или даже несколь— ких артерий вилизиева круга (рис. 5—57, 5 — 58). Так, инфаркт в зоне васкуляризации базиллярной артерии обнаруживается в 41,6% пациентов с диа— гностированным доплерографией спазмом базиллярной артерии.

По данным доплерографии, посттравматический вазоспазм начинается на 2—5 день после травмы и может захватить одну, две или даже все артерии виллизиева круга. При этом отмечают, что спазм артерий мозга после ЧМТ развивается в более ранние сроки, чем вазоспазм после разрыва аневризмы. Причина этой временной разницы еще не известна.

К очаговой ишемии мозга ведет тромбоз сосудов. Причиной тромбоза могут быть: 1) резкая гипотензия, приводящая к стазу эритроцитов и сладжфеномену, преимущественно в участках замедленного кровотока (концевые ветви в зонах смежного кровообращения); 2) механическое повреждение стенки сосуда; 3) повышенная свертываемость крови; 4) ДВС-синдром.

Отек стенок артериол, вследствие их повреждения или интрамурального кровоизлияния, суживающий или обтурирующий их просвет может быть причиной ишемии мозга. Окклюзии просвета венул, каплляров способствует также периваскулярный отек (отек ножек астроцитов) или перваскулярное кровоизлияние.

Читайте также:  Бани после перенесенного инфаркта

Окклюзия периферических участков мозговых артерий вызывает очаговый дефицит кровообращения и очаговые неврологические симптомы, которые быстро исчезают, если очаговая ишемия компенсируется за счет коллатералей менее чем за 1—2 часа.

Пероначальный неврологический дефицит отражает сублетальное повреждение нейронов участка мозга, выключенного полностью или частично из кровоснабжения окклюзированной артерией. Неврологический дефицит и соответственно повреждение нейронов становятся необратимыми. Если ишемия мозга длится более чем 60—120 минут, в соответствующем зоне васкуляризации окклюзированного сосуда развивается инфаркт мозга.

Макроскопическая характеристика инфарктов мозга.

Граница между свежим ишемическим инфарктом и перифокальной зоной мозга обычно бывает трудно различима непосредственно на аутопсии. При макроскопическом исследовании на аутопсии очаг ишемического инфаркта суточной давности не имеет четких границ с перифокальной зоной. Отек соответствующего полушария и возможно несколько более дряблая консистенция вещества мозга в центральной части очага ишемии позволяет заподозрить инфаркт мозга. По происшествии 2—3 дней начинают проступать границы ишемизированной ткани. Перифокальный отек обычно исчезает через две недели.

Ишемические инфаркты составляют основную массу инфарктов мозга, могут развиться в любом отделе мозга и быть различной величины (рис. 5—59).

Спазм артерии виллизиева круга, окутанной свертком крови: извилистые контуры эластической мембраны, частичная ее фрагментация; перинуклеарный отек в гладкомышечных клетках,  х200 (гематоксилин-эозин).
Рис. 5.57. Спазм артерии виллизиева круга, окутанной свертком крови: извилистые контуры эластической мембраны, частичная ее фрагментация; перинуклеарный отек в гладкомышечных клетках,  х200 (гематоксилин-эозин).

Спазм артерии виллизиева круга: отслоение адвентициального слоя, пернуклеарный отек и разная плотность окрашивания цитоплазмы гладкомышечных клеток, фрагментация, извилистые контуры эластической мембраны, х200 (гематоксилин-эозин).
Рис. 5.58. Спазм артерии виллизиева круга: отслоение адвентициального слоя, пернуклеарный отек и разная плотность окрашивания цитоплазмы гладкомышечных клеток, фрагментация, извилистые контуры эластической мембраны, х200 (гематоксилин-эозин).

Фронтальный срез на уровне передней трети моста. Очаг ишемического инфаркта моста, развившийся в случае ушиба височной доли.
Рис. 5.59. Фронтальный срез на уровне передней трети моста. Очаг ишемического инфаркта моста, развившийся в случае ушиба височной доли.

Случай ушиба мозга тяжелой степени. Лакунарный инфаркт в глубинных отделах белого вещества ипсилатерального полушария мозга,  х100  (окраска по Шпильмайеру).
Рис. 5.60. Случай ушиба мозга тяжелой степени. Лакунарный инфаркт в глубинных отделах белого вещества ипсилатерального полушария мозга,  х100  (окраска по Шпильмайеру).

«Зернистые шары» — макрофаги в очаге лакунарного инфаркта мозга,  х300 (окраска по Маллори).
Рис. 5.61. «Зернистые шары» — макрофаги в очаге лакунарного инфаркта мозга,  х300 (окраска по Маллори).

Новообразованные сосуды в очаге инфаркта, х20О (окраска по Шпильмайеру).
Рис. 5.62. Новообразованные сосуды в очаге инфаркта, х20О (окраска по Шпильмайеру).

Некроз нейронов в периферических участках инфаркта мозга. Набухание, вакуолизация, лизис цитоплазмы нейронов, деструкция ядра,  х200 (окраска по Нисслью).
Рис. 5.63. Некроз нейронов в периферических участках инфаркта мозга. Набухание, вакуолизация, лизис цитоплазмы нейронов, деструкция ядра,  х200 (окраска по Нисслью).

Геморрагические инфаркты, обычно небольших размеров, развиваются в сером веществе. Причиной их возникновения может быть окклюзия, как артерий, так и вен. Макроскопически геморрагический инфаркт представляет собой очаг дряблой консистенции красного цвета с четкими границами (в отличие от кровоизлияний геморрагического типа). Четкость границ обусловлена тем, что кровоизлиянию предшествуют некробиотические процессы в веществе мозга. Однако, оба этих процесса сближены во времени в отличие от смешанного инфаркта.

Смешанный инфаркт — это ишемический инфаркт с очагами кровоизлияния различной давности, что придает ему пестрый вид. Чаще всего возникают в больших полушариях мозга, достигая нередко больших размеров.

Лакунарные инфаркты являются результатом окклюзии мелких пенетрирующих артериол. Развиваются они в базальных ганглиях, внутренней капсуле, подушке моста, в субкортикальном белом веществе. Размер лакун обычно не превышает 15-36 мм в диаметре и зависит от калибра окклюзированного сосуда (рис. 5—60). Свежие лакунарные инфаркты трудно различимы и могут остаться незамеченными на срезах мозга, производимых непосредственно во время аутопсии.

Микроскопическая характеристика инфарктов мозга.

Экспериментальная окклюзия интракраниальной артерии приводит к образованию пестрого очага ишемии-гиперемии, который через 2—3 часа сливается в один большой участок «инфаркта» мозга.

Изменения в структурах мозга, вызванные окклюзией артерии, нарастают постепенно. На обзорных гистологических препаратах, окрашенных гематоксилином и эозином, первые признаки повреждения нейронов выявляются через 2—3 часа. Уже через 3 часа после окклюзии артерии выявляются три зоны инфаркта — центральная, реактивная и перифокальная. Некробиотические процессы в нейронах нарастают в течение первых 18—24 часов.

Как показали экспериментальные исследования, начало гибели первой группы нейронов в зоне ишемии, совпадает с началом дезинтеграции в олигодендроцитах. Астроциты, в отличие от нейронов, претерпевающих дегенеративные изменения, в первые 4—6 часов после начала ишемии, в этот промежуток времени проявляют даже признаки активации. Через 8—12 часов после окклюзии артерии, выявляется слабое окрашивание миелиновой оболочки. Дезинтеграция миелиновой оболочки наступает через 2—3 дня. Некроз эндотелиальных клеток отчетливо виден уже через 2 дня после окклюзии сосуда. Краевое стояние нейтрофилов в капиллярах и венулах можно обнаружить уже через 12 часов после начала ишемии. Внедрение нейтрофилов в участок некроза мозга начинается через 24—36 часов. В это время появляются моноциты, которые через 5—7 дней превращаются в макрофаги (рис. 5—61) и новообразованные сосуды врастают в очаг инфаркта (рис. 5—62).

Апоптоз

Еще в работах классиков нейроморфологии указывалось, что через 4—8 недель после ЧМТ в коре не только ипсилатерального, но и контрлатерального полушария мозга обнаруживаются так называемые «ишемические» изменения нейронов (красные нейроны). Полагали, что эти изменения нейронов с последующей их гибелью, являются результатом длительной гипоксии мозга.

Читайте также:  Сообщение об инфаркте миокарда

Действительно, гистологические доказательства гипоксического повреждения нейронов гиппокампа и других отделов головного мозга обнаружены в 93% случаев ЧМТ с документированной гипоксемией. Исследования морфологии экспериментальной ЧМТ также показали, что в течение первых недель после травмы мозга, наблюдается отсроченная гибель нейронов в зоне смежного кровоснабжения, в гиппокампе и в зрительном бугре.

Так, в 84% аутопсии летальных случаев закрытой черепно-мозговой травмы было обнаружено «выпадение» нейронов или тяжелые их повреждения в зоне С-А-1 гиппокампа. Из них, в 44% выявлены повреждения нейронов и в зоне С-А-3 гиппокампа, не обладающего избирательной чувствительностью к гипоксии.

Обобщив результаты серии исследований, M. Kotapka с соавт. пришел к заключению, что гипоксия-гипоксемия, возникающая вследствие раз— личных причин, таких как нарушения дыхательной функции, артериальная гипотензия, воздействие экзотоксинов, нарушения мозгового кровообращения и т.д., только частично влияет на избирательную гибель нейронов гиппокампа после ЧМТ. Такого рода наблюдения показывали, что, вероятно, существуют какие-то другие механизмы повреждения нейронов, помимо гипоксии-ишемии.

В середине 90-х годов работами A. Rink c соавт. было получено доказательство, что причиной отсроченной гибели нейронов, по крайней мере, на моделях экспериментальной ЧМТ, является апоптоз этих клеток.

Термин «апоптоз» (опадающие листья), многие исследователи используют как синоним понятия «запрограммированной смерти клетки», тогда как эти термины означают сходные, но не идентичные процессы.

Генетически запрограммированная смерть клетки является важной составной частью инволюционных процессов в организме (например, возрастная атрофия вилочковой железы), в обновлении популяции кроветворных элементов, эпителия желудочно-кишечного тракта и дыхательных путей и т.д. и является результатом активации генетической программы смерти, соответственно «биологическим часам» каждой конкретной клетки.

Апоптоз — смерть клетки, индуцированной извне, т.е. «суицид, самоубийство» клетки. В этих случаях гибель клетки начинается с фрагментации ДНК, т.е. разрушения ее ядра.

Некроз клетки является пассивным процессом, результатом ее «убийства» внешними по отношению к клетке факторами. Гибель клетки при некрозе начинается с цитоплазмы и завершается фрагментацией ДНК. Морфологическая характеристика некроза клетки заключается в набухании, побледнении, увеличении объема цитоплазмы, лизисе ее органелл, разрушении клеточной мембраны (рис. 5—63).

Морфологическая характеристика апоптоза включает в себя конденсацию хроматина (рис. 5—64), распад ядра с образованием апоптотических телец (кариорексис), выраженную внутриядерную фрагментацию ДНК, эозинофилию и уменьшение объема цитоплазмы, в которой органеллы длительное время остаются интактными.

Гиперхромия и уменьшение площади цитоплазмы, пикноз ядра нейронов в гиппокампе полушария, контлатерального очагу ушиба,  х200 (окраска по Нисслью).
Рис. 5.64. Гиперхромия и уменьшение площади цитоплазмы, пикноз ядра нейронов в гиппокампе полушария, контлатерального очагу ушиба,  х200 (окраска по Нисслью).

В связи с все нарастающим интересом к проблеме апоптоза, в 1992 году Y. Gavrielli с соавторами, предложили иммуногистохимический метод выявления in situ внутриядерной фрагментации ДНК, так называемый TUNEL-метод, который наряду с электронно-микроскопическим методом позволяет выявить не только конечную фазу (обнаруживаемую на рутинных гистологических препаратах в виде кариорексиса), но и начальные фазы апоптоза.

Работами M. Chopp с соавторами, было показано, что в отличие от некроза нейрона (необратимого процесса), на ранних стадиях развития апоптоза нейрона, наряду с фрагментацией ДНК сохраняется также и возможность репарации. Так, например, было выявлено патогенетическое влияние окислительно-восстановительных процессов на возможность репарации ДНК.

Способность к полноценной репарации ДНК, является условием сохранения нормального функционирования нейрона. В случаях хромосомной генной мутации увеличивается возможность того, что репарация ДНК может пойти с ошибками. Дефектная репарация ДНК, приведшая к нестабильности генома, может быть причиной способствующей запуску механизмов апоптоза.

Подтверждение положения о роли апоптоза в отсроченной гибели нейронов гиппокампа было получено в 1997 году R. Clark с соавт., который использовал иммуногистохимический метод выявления фрагментации ДНК (TUNEL-метод).

Совершенно очевидно, что тяжесть повреждения и степень репарации ДНК нейронов, является одним из факторов, определяющих течение травматической болезни головного мозга. После черепно-мозговой травмы, ишемии мозга, разворачивается каскад внутри- и внеклеточных механизмов, приводящих нейроны к апоптозу. При этом начало фрагментации внутриядерной ДНК отмечено только на 3—8 день после церебральной ишемии.

Эти данные уже приобретают и практическое значение. Используемые в настоящее время в неврологических клиниках терапевтические мероприятия направлены, в основном, на предотвращение ишемического коагуляционного некроза и не учитывают возможность гибели нейронов, вследствие апоптоза. Тогда как, дополнение лечения препаратами, уменьшающими риск развития апоптоза, может открыть новые возможности в предотвращении или уменьшении посттравматического повреждения мозга.

С.Ю.Касумова

Опубликовал Константин Моканов

Источник